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Abstract
Implementation of quantum logical gates for multilevel systems is demonstrated
through decoherence control under the quantum adiabatic method using simple
phase modulated laser pulses. We make use of selective population inversion
and Hamiltonian evolution with time to achieve such goals robustly instead of
the standard unitary transformation language.

PACS numbers: 03.67.Lx, 32.80.Qk

(Some figures in this article are in colour only in the electronic version)

Use of adiabatic evolution for quantum computation has recently become an attractive approach
due to its inherent robustness [1–4]. In the framework of the adiabatic quantum method,
logical implementation of quantum gates uses the language of ground states, spectral gaps
and Hamiltonians wherein a quantum gate represents a device which performs a unitary
transformation on selected qubits in a fixed period of time. Thus, a computational procedure
in the adiabatic quantum computation model is described by the continuous time evolution
of a time-dependent Hamiltonian with limited energetic resources—an aspect that is often
neglected in the unitary gate language [5].

In this letter, we show that an important aspect of the adiabatic quantum computation
model lies in addressing an atomic or molecular ensemble and hence in robust implementation.
We first demonstrate a simple Hadamard operation with phase modulated laser pulses. Next we
show how selective population transfer in a three-level system that has also been demonstrated
experimentally [6, 7] can be a very useful adiabatic quantum computing logic. Finally, we
show that it is possible to decouple states that are parts of the coupled vibrational relaxation
tier into simple qubits through control of decoherence through adiabatic coupling. As far as
we know, these results are the first realistic demonstration of the possibility of using ensemble
states for adiabatic quantum computation in multilevel systems.

We apply a linearly polarized laser pulse of the form E(t) = ε(t) ei[ωt+φ(t)] to a simple
two-level system with |1〉 → |2〉 transition, where |1〉 and |2〉 represent the ground and excited
eigenlevels, respectively, of the field-free Hamiltonian. The laser carrier frequency or the
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centre frequency for pulsed lasers is ω. We have ε(t) and φ(t) as the instantaneous amplitude
and phase, respectively. We can define the rate of change of instantaneous phase, φ̇(t), as the
frequency sweep. If we expand the instantaneous phase function of E(t) as a Taylor series
with constants bn, we have

φ(t) = b0 + b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5 + · · ·
φ̇(t) = b1 + 2b2t + 3b3t

2 + 4b4t
3 + 5b5t

4 + · · ·
φ̇(t) =

∑
n=1

nbnt
(n−1).

(1)

In a recent paper [8], we have proposed the use of simple chirped pulses, which, by contrast,
have been produced routinely at very high intensities and at various different wavelengths
for many applications, including selective excitation of molecules in coherent control.
Establishing this generalization enables us to treat all possible chirped pulse cases by exploring
the effects of each of the terms in equation (1) initially for a simple two-level system and then
extend it to the multilevel situation for a model five-level system of anthracene molecule, which
has been previously investigated with complicated shaped-pulses [9, 10]. We use a density
matrix approach by numerically integrating the Liouville equation dρ(t)

dt
= i

h̄
[ρ(t),H FM(t)]

for a Hamiltonian in the rotating frequency modulated (FM) frame of reference. ρ(t) is a 2 × 2
density matrix whose diagonal elements represent populations in the ground and excited states
and off-diagonal elements represent coherent superposition of states. The Hamiltonian for the
simple case of a two-level system under the effect of an applied laser field can be written in
the FM frame for N-photon transition [11] as

H FM = h̄




� + Nφ̇(t)
�1

2
�∗

1

2
0


 .

The time derivative of the phase function, φ̇(t), appears as an additional resonance offset
over and above the time-independent detuning � = ωR − Nω, while the direction of the
field in the orthogonal plane remains fixed. We define the multiphoton Rabi frequencies
as complex conjugate pairs: �1(t) = k(µeffε(t))N/η and �∗

1(t) = k(µeffε
∗(t))N/η,

where k is a proportionality constant having dimensions of (energy)(1−N), which in SI units
would be Joule(1−N). For the |1〉 → |2〉 transition, ωR = ω2 − ω1 is the single-photon
resonance frequency. We have assumed that the transient dipole moment of the individual
intermediate virtual states in the multiphoton ladder results in an effective transition dipole
moment, µN

eff , which is a product of the individual N virtual state dipole moments, µN (i.e.,
µN

eff = ∏N
n µn). This approximation is particularly valid when intermediate virtual level

dynamics for multiphoton interaction can be neglected [3, 12].
Let us extend the two-level formalism first to a three-level system of alkali atom

excitations. The Hamiltonian for such a simple case of a three-level system under the effect
of an applied laser field can be written in the FM frame for N-photon transition as,

|0〉 |1〉 |2〉

H FM = h̄




0 �01(t) �02(t)

�∗
01(t) �1 + Nφ̇(t) 0

�∗
02(t) 0 �2 + Nφ̇(t)


 ,

where �01(t) is the transition matrix element between the ground state |0〉 and the excited state
|1〉 while �02(t) is the transition matrix element between the ground state |0〉 and the excited
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Figure 1. (a) Schematic of a three-level system with two possible transitions modelling atomic
sodium and rubidium atoms. A short pulse has enough bandwidth (�ω) to excite both the possible
states. (b) A transform-limited 2 ps Gaussian pulse having enough bandwidth (�ω) interacts with
a model three-level atomic system in a single photon mode or in a multiphoton condition and the
population evolution shows that no selectivity in population transfer is possible. (c) A linearly
swept Gaussian pulse can generate selective inversion and depending on the sign of the frequency
chirp (whether (i) red to blue or (ii) blue to red) can selectively invert the population under the
adiabatic limit.

state |2〉, expressed in Rabi frequency units. In such a model with two possible transitions
(figure 1(a)), femtosecond pulses have enough bandwidth to excite both the transitions and
there is hardly any selectivity possible. At the end of the pulse, population gets equally
distributed between the three states |0〉, |1〉 and |2〉, if the couplings for |0〉 → |1〉 and |0〉 →
|2〉 are identical (figure 1(b)). However, as shown in figure 1(c), in the case of an adiabatic
population transfer process between the coupled states, it is possible to selectively excite either
state |1〉 or state |2〉 by simple linear frequency sweeping of the laser frequency either from
red to blue or from blue to red. This has been demonstrated experimentally also in the case of
sodium and rubidium atomic transitions.
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Figure 1. (Continued.)

Finally, we extend the formalism to a multilevel situation involving intramolecular
vibrational relaxation (IVR). In the conventional zeroth-order description of intramolecular
dynamics, the system can be factored into an excited state that is radiatively coupled to the
ground state, and nonradiatively to other bath states that are optically inactive (figure 2(a)).
These ‘dark’ states have no radiative transition moment from the ground state as determined
by optical selection rules [13]. They can belong to very different vibrational modes in the
same electronic state as the ‘bright’ state, or can belong to different electronic manifolds.
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Figure 2. (a) Schematic of IVR for Anthracene molecule from [9] based on data extracted from
experimental measurements in [13]. (b) Model tier level coupled IVR system common in many
polyatomic systems. This is also a common coupled level system for rovibrational states.

These dark states can be coupled to the bright state through anharmonic or vibronic couplings.
Energy flows through these couplings and the apparent bright state population disappears.
Equivalently, the oscillator strength is distributed among many eigenstates. The general
multilevel Hamiltonian in the FM frame for an N-photon transition (N � 1), expressed in the
zero-order basis set, is:

H = h̄

|0〉 |1〉 |2〉 |3〉 |4〉 · · ·


0 �1(t) 0 0 0 . . .

�∗
1(t) δ1(t) V12 V13 V14 . . .

0 V12 δ2(t) V23 V24 . . .

0 V13 V23 δ3(t) V34 . . .

0 V14 V24 V34 δ4(t) . . .

...
...

...
...

...




(2)

where �1(t) (and its complex conjugate pair, �∗
1(t)) is the transition matrix element expressed

in Rabi frequency units, between the ground state |0〉 and the excited state |1〉. The background
levels |2〉, |3〉, . . . are coupled to |1〉 through the matrix elements V12, V23, etc. Both Rabi
frequency �1(t) and detuning frequency (δ1,2,... = �1,2,... + Nφ̇(t)) are time dependent
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(the time dependence is completely controlled by the experimenter). In general, the applied
field would couple some of the dark states together, or would couple |1〉 to dark states, and
thus, the Vij terms would have both an intramolecular, time independent component and a
field-dependent component. As an alternative to equation (2), the excited states’ submatrix
containing the bright state |1〉 and the bath states |2〉, |3〉, . . . can be diagonalized to give the
eigenstate representation containing a set of �′

i as diagonal elements and corresponding �′
i as

off-diagonal elements. The eigenvalues of such a time-dependent Hamiltonian representation
are often referred to as the dressed states of the system. Such a representation corresponds
closely to what is observed in conventional absorption spectroscopy. As long as the intensity
of the field is very low (|�′

i | � �′
i) the oscillator strength from the ground state (and hence the

intensity of the transition), which is proportional to |�′
i |2 is distributed over the eigenstates,

and the spectrum mirrors the distribution of the dipole moment. On the other hand, a pulsed
excitation creates a coherent superposition of the eigenstates within the pulse bandwidth.
Physically, in fact, the presence of the dark states has been key to the loss of selectivity of
excitation to a specified bright state. Interestingly, such a process essentially is a Hadamard
operation in quantum computing language as this enables us to produce equal superposition
between the ground and excited states which form the qubits.

Another common situation with short pulses is a ladder excitation situation where the
individual excited states undergo dephasing through a coupled energy structure with states
|0〉, |1〉, |2〉, etc in the zero-order basis as shown in figure 2(b). Such a model of IVR is often
referred to as the tier model and is common in polyatomic molecules and in most rovibrational
states [14] and can be represented by the following Hamiltonian:

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉 |9〉

H FM = h̄




0 �1(t) �2(t) �3(t) 0 0 0 0 0 0

�∗
1(t) δ1(t) V12 V13 V14 V15 0 0 0 0

�∗
2(t) V12 δ2(t) V23 V24 V25 V26 V27 0 0

�∗
3(t) V13 V23 δ3(t) 0 0 V36 V37 V38 V39

0 V14 V24 0 δ4(t) 0 0 0 0 0

0 V15 V25 0 0 δ5(t) 0 0 0 0

0 0 V26 V36 0 0 δ6(t) 0 0 0

0 0 V27 V37 0 0 0 δ7(t) 0 0

0 0 0 V38 0 0 0 0 δ8(t) 0

0 0 0 V39 0 0 0 0 0 δ9(t)




.

(3)

A short pulse laser can optically couple the states |1〉, |2〉, |3〉, etc to the ground state |0〉 with
respective transition matrix elements expressed in Rabi units as �1(t), �2(t), �3(t), etc and
their corresponding complex conjugates. The background levels |4〉, |5〉, |6〉, etc are coupled
to the optically excited states |1〉, |2〉 and |3〉 through the matrix elements V14, V15, V24, etc.
Such a molecular system can become useful for realizing qubits effectively if these large
number of optically coupled states can be accessed simultaneously as has been in the case of
the atomic system of Rydburg state of cesium [15]. However, the difficulty in extending this
scheme to the molecular system starts at the very first step of initializing the qubits due to high
decoherence of the possible qubit states as in the gdanken system Hamiltonian presented in
equation (3). Thus an adiabatic scheme is necessary.



Letter to the Editor L621

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

|4>|2>

|3>

|1>

|0>
P

op
ul

at
io

n
P

op
ul

at
io

n

Time (ps)

(a)

(b)

Figure 3. (a) A transform-limited Gaussian pulse interacts with a model Anthracene molecule in a
single photon mode or in a multiphoton condition. (b) Due to strong coupling of the excited states,
|1〉, |2〉 and |3〉 to |4〉, |5〉, etc, population of the excited states are highly modulated even during
the period of a simple Gaussian excitation pulse for the tier-model system given in figure 2(b).

From experimental results on the fluorescence quantum beats in jet-cooled Anthracene,
the respective values (in GHz) of �1,2, . . . ,4 are 3.23, 1.7, 7.57 and 3.7; and V12 = −0.28,
V13 = −4.24, V14 = −1.86, V23 = 0.29, V24 = 1.82, V34 = 0.94. When these values
are incorporated in equation (2), we obtain the full zero-order Hamiltonian matrix that can
simulate the experimental quantum beats (figure 3(a)) upon excitation with a transform-limited
Gaussian pulse (i.e., φ̇(t) = 0). Since |0〉 and |1〉 do not form a closed two-level system,
considerable dephasing occurs during the second half of the Gaussian pulse. Thus, in a
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Figure 4. A linearly swept Gaussian pulse can generate ‘photon-locking’. The evolution of
the dressed state character is unchanged while locking occurs but as the pulse is turned off, the
eigen-energy curves cross and the bright state population quickly dephases.

coupled multilevel system, simple unchirped pulses cannot be used to generate sequences of
π/2 and π pulses, as in NMR. The dark states start contributing to the dressed states, well
before the pulse reaches its peak, and results in redistributing the population from the bright
state (|1〉) into the dark states (figure 3(a)). The situation is worse when we use the tier-model
Hamiltonian in equation (3) as the redistribution occurs within the bright states through the
participation of the dark states (figure 3(b)).

A linear sweep in frequency of the laser pulse (i.e., φ̇(t) = 2b2t) can be generated by
sweeping from far above resonance to far below resonance (blue to red sweeps), or its opposite.
For a sufficiently slow frequency sweep, the irradiated system evolves with the applied sweep
and the transitions are ‘adiabatic’. If this adiabatic process is faster than the characteristic
relaxation time of the system, such a laser pulse leads to a smooth population inversion, i.e.,
an adiabatic rapid passage (ARP) [16]. If the frequency sweeps from below resonance to exact
resonance with increasing power, and then remains constant, adiabatic half passage occurs
and photon-locking is achieved with no sudden phase shift. However, even under adiabatic
full passage conditions, figure 4 shows that there is enough slowing down of the E field to
result in photon-locking over the FWHM of the pulse. These results hold even under certain
multiphoton conditions where only an Nth (N � 2) photon transition is possible. Theoretically,
scaling the number of dark states is possible as long as there is finite number of states and
there are no physical limitations on Stark shifting.

The quadratic chirp, i.e., φ̇(t) = 3b3t
2, is the most efficient in decoupling the bright

and dark states as long as the Stark shifting of these states prevail at the peak of the pulse.
As the pulse is turned off, the system smoothly returns to its original unperturbed condition
(figure 5(a)). This would be a very practical approach of controlling the coupling of the states
with realistic pulse shapes. In figure 5(b), we show that it is possible to initialize the qubits
to equal superposition as is required for further quantum operations only with the help of
decoherence controlling shaped pulses even when the intramolecular couplings between the
states are strong (i.e., for large values of V14, V15, V24, etc). This is possible since the time
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Figure 5. (a) The quadratic chirped Gaussian pulse is the most efficient in decoupling the bright
and dark states during the pulse. The eigen-energy curves and the corresponding evolution of the
dressed state character show that the entire process is highly adiabatic. (b) The quadratic chirped
Gaussian pulse effectively generates equal superposition of the excited states (|1〉, |2〉, etc) during
the period of the shaped pulse for the tier-model system given in figure 2(b).

dependence can be completely controlled by the experimenter when a shaped pulse is being
used.

The cubic term, i.e., φ̇(t) = 4b4t
3 behaves more like the linear term (figure 6). It also

decouples the bright and dark states as long as the Stark shifting of these states prevail at
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Figure 6. Effect of a cubic chirped Gaussian pulse is similar to the linearly swept pulse
(figure 3), although the evidence of population oscillation indicates that this chirp is not as adiabatic
as the linear chirp. The eigen-energy curves cross towards the end of the pulse and the bright state
population gets redistributed.

the peak of the pulse. However, the oscillatory nature of the ‘photon-locking’ shows that the
higher-order terms in the Taylor series involve more rapid changes and fail to achieve perfect
adiabatic conditions. As the pulse is turned off, it attempts to invert the bright state population,
which quickly dephases, analogous to the linear chirp case. Thus, in an isolated two-level
system that does not suffer from the population dephasing, the linear, cubic, and all the higher
odd-order terms of the Taylor series (equation (1)) yield inversion of population, while the
even-order terms produce self-induced transparency.

For a multilevel system, the induced optical ac Stark-shift by the frequency swept pulse
moves the off-resonant coupled levels far from the resonant state leading to an effective
decoupling. Under the perfectly adiabatic condition, pulses with the even terms in the Taylor
series return the system to its unperturbed condition at the end. In fact, all higher-order odd
terms behave in one identical fashion and the even terms behave in another identical fashion.
It is only during the pulse that the Stark-shifting of the dark states are decoupled and IVR
restriction is possible in the multi-level situation. In the present calculations, we have used
equal values to bn in equation (1), to bring out the effects of the higher-order terms in the
series. In practice, since equation (1) represents a convergent series, only lower-order terms
are more important, and since all higher-order terms produce the same qualitative results as
the lower-order terms, one needs to consider only up to the quadratic term.

We have already discussed how Hadamard gates can be generated under such adiabatic
manipulations. Using the adiabatic coupling schemes as discussed above, it is possible to
further construct gates with multilevel systems and such truth tables are shown in tables 1
and 2. In table 1, we use an ensemble of pseudo-two level system B that can be generated from
any IVR multilevel system as discussed here. B can either be in ground (state 0) or excited
(state 1) on interacting with control pulse A, which provides robust chirped pulse inversion
(condition 1) and the self-induced transparency or dark pulse (condition 0). Similarly, in
table 2, we consider a three-level system D that can be in ground (state 000) or first excited
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Table 1. Adiabatic gates with chirped pulses for pseudo two-level system.

Shaped pulse A B A ⊕ B

‘Inverting’ pulse 1 1 0
1 0 1

‘Dark’ pulse 0 1 1
0 0 0

Table 2. Adiabatic gates with chirped pulses for three-level system.

Shaped pulse C D C ⊕ D

‘Inverting’ pulse selective to first excited 010 100 010
010 010 100
010 001 001

‘Inverting’ pulse selective to second excited 001 100 001
001 010 010
001 001 100

‘Dark’ pulse 000 100 100
000 010 010
000 001 001

(state 010) or second excited (state 001) on respective interaction with control pulse C, which
provides robust chirped pulse inversion to the first excited state (condition 010), robust chirped
pulse inversion to the second excited state (condition 001) and the self-induced transparency
or dark pulse (condition 000). Such interactions can be considered as pseudo-CNOT gates
where the control is in the shaped pulse.

The results are generic and illustrate that the adiabatic scheme can be used for control
of population transfer for two- and three-level systems such that they can result in ensemble
gates and for multilevel systems, the intramolecular dephasing can be kept to a minimum for
the duration of the ‘locking’ period under adiabatic conditions. In all these cases, since the
effect occurs under an adiabatic condition in all these frequency swept pulses, it is insensitive
to the inhomogeneity in Rabi frequency. The simulations have been performed with laser
pulses with Gaussian, hyperbolic-secant and cosine-squared intensity profiles over a range
of intensities. They show identical results of ‘locking’ the population in the chosen excited
state of a multilevel system, conforming to the adiabatic arguments that there is hardly any
effect of the actual envelope profile. These results are examples of the robustness and utility
in the scheme of adiabatic processes that are critical to the adiabatic quantum computing
scheme. To our knowledge, these results presented here form the first realistic approaches in
the demonstration of the possibility of using ensemble states for developing robust adiabatic
quantum computing scheme in multilevel systems.
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